Combustible Dust Testing

实验室测试以量化灰尘爆炸和反应性危害

易燃气体和蒸气测试

实验室测试以量化蒸气和气体混合物的爆炸危害

Chemical Reactivity Testing

实验室测试以量化反应性化学危害,包括材料不兼容,不稳定性和失控的化学反应的可能性

DIERS方法论

Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods

Deflagrations(灰尘/蒸气/气体)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

压力减轻尺寸只是第一步,安全处理过压事件的废水排放至关重要

热稳定性

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

未点

符合运输和存储规定的危险材料的分类

安全数据表

开发关键的安全数据以包含在SDS文档中

Biological

机载病毒气溶胶的模型运输,以指导安全操作和通风升级

放射性

污染的模型传输用于源项和泄漏路径分析

火灾分析

热量和烟雾的模型运输以进行火灾分析

易燃或有毒气体

在过程中运输易燃或有毒气体

OSS咨询,绝热和反应量热法和咨询

现场安全研究可以帮助识别爆炸性和化学反应危害,从而确定适当的测试,模拟或计算以支持安全规模

Mechanical, Piping, and Electrical

工程和测试以支持安全的工厂操作,并为传热,流体流,电力系统的问题开发解决方案

Battery Safety

测试以支持电池和电力备用设施的安全设计,特别是满足UL9540A ED.4

氢安全

测试和咨询与使用或生产氢相关的设备和过程相关的爆炸风险

Spent Fuel

用于包装,运输和存储用过的核燃料的安全分析

Decommissioning, Decontamination and Remediation (DD&R)

Safety analysis to underpin decommissioning process at facilities which have produced or used radioactive nuclear materials

实验室测试和软件功能

定制测试和建模服务以验证DD&R流程的分析

核概述

我们的核服务集团因全面评估而被认可,以帮助商业核电站有效运作并保持合规性。

Severe Accident Analysis and Risk Assessment

Expert analysis of possible risk and consequences from nuclear plant accidents

热液压

测试和分析以确保关键设备将在不利的环境条件下运行

Environmental Qualification (EQ) and Equipment Survivability (ES)

测试和分析以确保关键设备将在不利的环境条件下运行

实验室测试和软件功能

测试和建模服务以支持电厂解决紧急安全问题的解决

绝热安全热量表(ARSST和VSP2)

低热惯性绝热热量计,专门设计用于提供对安全过程设计至关重要的直接可扩展数据

Other Lab Equipment (DSC/ARC supplies, CPA, C80, Super Stirrer)

产品and equipment for the process safety or process development laboratory

弗斯特

紧急救济系统设计软件,以确保安全处理反应性化学品,包括考虑两相流量和失控的化学反应

FATE

设施建模软件可以机械地跟踪热量,气体,蒸气和气雾剂的运输,以进行多房间设施的安全分析

博客

我们经验丰富的团队可以使您了解最新的流程安全开发。

流程安全通讯

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

拥有超过40年的行业专业知识,我们拥有丰富的流程安全知识。

Recent Posts

内部内部保留(IVR)作为严重的事故管理策略

发表 The Fauske Team在05.17.17

介绍

During a rare accident involving severe core damage in a Nuclear Power Plant (NPP), if the molten core material can be contained within the boundary of the reactor vessel, the severity of the accident is expected to be greatly reduced. Therefore, the severe accident management strategy based on in-vessel retention (IVR) of molten core debris is highly desirable, and has been adopted by advanced reactor designs such as VVER, AP1000 and APR1400. In these designs, the IVR strategy requires NPP operators to perform specific actions including: a) Opening valves to depressurize the reactor vessel and reduce the stress in the reactor vessel lower head b) Flooding the reactor cavity to a certain high level to ensure the reactor vessel is covered and cooled by water from the outside c) Injecting water into the reactor vessel after the vessel is fully depressurized to increase the probability of IVR success One of advantages of the IVR strategy is that the actions required in this strategy can be performed without AC power.

Issues Related to IVR Success

IVR的成功取决于从熔融核心材料(Corium)到反应器容器壁的热通量。热通量不得超过使容器失败的机械和热极限。机械限制是由于必须将反应器容器壁烧杯至非常小的厚度,以使热通量通过其进行。但是,如果容器壁太薄,则无法支撑下部头部墙壁的皮rium毛的重量。在这种情况下,船只将逐渐失败。热极限是由于以下事实,即热通量不得超过反应堆容器壁外表面上的临界热通量(CHF)。如果热通量超过CHF,则反应器容器壁温将迅速升高并导致故障。

从血管内到反应堆容器的热通量沿容器壁不均匀。在IVR研究人员中已经商定了最高的热通量可能发生在西果的顶部,在西果池的顶部,在那里,在那里,在那里,在那里,海池中的金属材料与较重的氧化材料隔离以形成金属层。金属层越薄,越大通量向墙壁,导致所谓的“聚焦效果”。理想情况下,将有足够数量的金属,包括钢和未氧化的ZR,可以在顶部形成厚的金属层。但是,在某些条件下,海rium中的非氧化ZR可以降低r骨中的UO2形成U金属。共晶U,ZR和钢比氧化材料重,并留在骨的底部形成重金属层。假定重金属以除去顶部(轻)金属层中的钢,从而使轻质金属层变薄,“聚焦效果”更糟。

Capabilities of MAAP5 Code for IVR Analysis Application

IVR analysis is challenging and, in many situations, requires simulations using integral a severe accident thermal hydraulic code. An appropriate code is the Modular Accident Analysis Program (MAAP), which is owned by the Electric Power Research Institute (EPRI) and developed and maintained by Fauske & Associates, LLC (FAI). The latest official revision of the MAAP5 code, MAAP5.03, is equipped with comprehensive models of the corium pool in the lower plenum, reactor vessel and in- and ex-vessel heat transfer. The key features of the models are discussed below. Page 1 Technical Bulletin No: N-16-07 In-Vessel Retention (IVR) as a Severe Accident Management Strategy By: Quan Zhou, Ph.D., Sr. Nuclear Engineer, Fauske & Associates, LLC

如图1(a)所示,MAAP5假设金属材料一旦骨出现在下部头部。如果海rium进入水液的下头,则由于燃料冷却液相互作用(FCI),皮菌可能会碎裂。碎片的冷冻石灰颗粒作为分隔金属层和氧化层的地壳顶部的颗粒床。随着粒子床的融化,熔融质量被添加到光金属层和氧化层中,最终导致了两层模型,如图1(b)所示。在某些情况下,可以在氧化层的下部形成重金属层,然后将rui池建模为三层结构,如图1(c)所示。

N-16-07 In-Vessel Retention (IVR) as a Severe Accident Management Strategy_Page_1.jpg

Topics:MSD

cta-bg.jpg

我的灰尘可燃吗?

一个流程图可帮助您决定
现在下载